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Abstract Molecular alignment is viewed as a permutation Procrustes problem,
where the goal is to find the best assignment of points (or functional groups) in one
molecule to the points in another molecule. A penalty function ensures that the optimal
alignment respects the underlying connectivity between atoms/points. This method
helps reveal why molecular alignment suffers from the curse of dimension.

Keywords Molecular similarity · 3D-QSAR · Quantum QSAR · Molecular
alignment · Permutation Procrustes problem · k-nearest neighbor alignment

1 Motivation

Three-dimensional quantitative structure activity relationships (3D-QSAR) are built
by computing the similarity between different molecules, then using the precept that
similar molecules have similar properties to make predictions. [1–8] In assessing the
similarity of two molecules, however, one must first choose the appropriate relative
position, orientation, and (sometimes) conformation of the molecules: a molecule
will not even be similar to itself if it is misaligned. This leads to the problem of
finding the optimal alignment between molecules. There are many approaches in the
literature (see Ref. [9]) and references cited therein). We are primarily interested in
the quantum QSAR alignment problem, where the molecules are aligned based on
quantum mechanical properties. Cf. Refs. [10–16]. However, our approach is valid
for any sort of molecular alignment and, indeed, the general problem of structural
alignment.
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One problem in molecular alignment is that there is no way to quantify what indi-
cates a “good alignment” method. Consider two ambiphilic molecules. (A molecule
is ambiphilic if it has both electrophilic and nucleophilic sites.) The activity of these
molecules with respect to an electrophile is determined by their nucleophilic sites, so
assessing the similarity of the molecules’ nucleophilic activity requires aligning their
nucleophilic regions. Similarly, for assessing the activity of the molecules to a nucle-
ophilic reagent, their electrophilic regions should be aligned. For another property
(e.g., their solubility), an entirely different alignment protocol might be preferable. It
is important, then, to have a flexible alignment method that can align molecules based
on many different criteria. In this paper we present a flexible alignment method of this
type.

We assume that each molecule, M , is described by a set of N (M)
pts points,

{
q(M)

i

}N (M)
pts

i=1
.

At each point one has a vector of Nprop properties,
{[

p(M)
1 , p(M)

2 , . . . , p(M)
Nprop

]}N (M)
pts

i=1
.

The similarity of the molecules is the written as

Z(M,M ′) =
min

(
N (M)

pts ,N
(M ′)
pts

)

∑
i=1

wi j

(
p(M)

i

)T
LLT p(M ′)

j (1)

where the point-weights
{
wi j

}min

(
N (M)

pts ,N
(M ′)
pts

)

i, j=1 and the Nprop × Nprop lower diagonal
matrix L are adjusted to construct problem-specific alignment methods. (The point-
weights could depend on the properties, but we shall assume that they do not.) In
most cases the point-weights will either be wi = 1/Npts or diagonal (e.g. integration)
weights wi j = wiδi j ; in most cases the matrix L will be diagonal, but allowing
off-diagonal structure can be helpful when specific linear combinations of properties
are good predictors of the molecular activity. By suitably choosing L, one can tune
the relative importance of matching different properties (or linear combinations of
properties) of the molecules. By choosing wi j , one controls the relative importance of
different points/atoms in the molecules. Notice that the number of points in the two
molecules can be different; that is, not every point in one molecule has to correspond to
a point in the other molecule. The alignment problem amounts to finding the optimal
correspondence of points.

This general form of molecular similarity includes many of the prevalent cases in
the literature. The venerable Carbó indicator arises when the weights are integration
weights and the property is the electron density. [8,17,18] Similarity measures based
on one (or several) chemical reactivity indicators, e.g., those based on conceptual DFT,
[19–23] can be handled similarly. [14,15,24–26] A condensed representation of the
molecule can be obtained by computing atomic contributions to molecular properties
(e.g., the energy or the total molecular charge) and chemical reactivity indicators.
[27–34] In this case, one measures molecular similarity by building a mapping between
atoms in one molecule and atoms in a different molecule. However, the procedure we
are using applies to the alignment of any set of points, not just atomic positions.
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In this paper, we propose an algorithm for maximizing the similarity of two mole-
cules, as measured by Eq. (1). To do this, we view finding the optimal alignment of

the molecular point sets of molecules M and M ′,
{

p(M)
i

}N (M)
pts

i=1
and

{
p(M ′)

i

}N
(M ′)
pts

i=1
, as

a generalized permutation Procrustes problem. Molecular and macromolecular align-
ment has been viewed as a Procrustes problem before, [35–37] but to our knowledge,
this is the first time the link to the permutation Procrustes algorithm has been made and
the first time an Procrustes-based algorithm has been proposed for the very general
similarity measure in Eq. (1). (In fact, the molecular similarity measure we treat is
even more general than this one, as it includes information about the similarity of kth
nearest neighbors. [38–40])

2 Penalized permutation Procrustes

Denote the properties of the k nearest neighbors of point i as p(M)
i,0 , p(M)

i,1 , . . . , p(M)
i,k ,

where p(M)
i,0 are the properties of the point itself. Construct an N (M)

pts × (k + 1) matrix
containing the (transformed) property vectors,

F(M) ≡

⎡
⎢⎢⎢⎢⎣

LT
0 p(M)

1,0 LT
1 p(M)

1,1 · · · LT
k p(M)

1,k

LT
0 p(M)

2,0 LT
1 p(M)

2,1 · · · LT
k p(M)

2,k
...

...
. . .

...

LT
0 p(M)

Npts,0
LT

1 p(M)
Npts,1

· · · LT
k p(M)

Npts,k

⎤
⎥⎥⎥⎥⎦

(2)

In general, the LT
k will decrease in magnitude as k increases, because it is less

important to ensure that two points/atoms kth nearest neighbors have similar prop-
erties than it is to ensure that the points/atoms themselves are similar. In the case
where k = 0, the below method will optimize the similarity measure in Eq. (1).
Alternatively, if we consider the properties of the k-nearest-neighbor atoms to be
properties of the atom itself, the similarity expression in Eq. (1) is recovered by
considering,

p(M)
i =

[
LT

0 p(M)
i,0 , LT

1 p(M)
i,1 , . . . , LT

k p(M)
i,k

]T
. (3)

Our goal is to find a permutation of the rows of F(M) that maximizes its similarity
(equivalently, minimizes its distance) to F(M ′). Without loss of generality, we assume

that N (M)
pts < N (M ′)

pts . Let P be a N (M ′)
pts × N (M)

pts generalized permutation matrix. That
is, all the elements of P are either zero or one, all the row-sums are either zero (in
which case a point/atom in M ′ is unassigned) or one, and all the column-sums are
either zero (in which case an atom in M is unassigned) or one. Each nonzero entry,
pkl = 1, in P indicates that the kth point/atom in M ′ is assigned to the lth point/atom
in M . Our problem is then,
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min︸︷︷︸⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pi j ∈{0,1}

∣∣∣∣∣∣∣∣∣∣

{0, 1} = ∑N
(M ′)
pts

i pi j

{0, 1} ≥ ∑N (M)

pts
j=1 pi j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Tr

[(
F(M ′) − PF(M)

)T
W

(
F(M ′) − PF(M)

)]

(4)

W is the matrix containing the wi j ’s from Eq. (1)
If we require that every point/atom in M be assigned, then (4) simplifies to

max︸︷︷︸⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pi j ∈{0,1}

∣∣∣∣∣∣∣∣∣∣

{0, 1} = ∑N
(M ′)
pts

i pi j

1 = ∑N (M)

pts
j=1 pi j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Tr

[(
F(M ′)

)T
W

(
PF(M)

)]

(5)

because
(
F(M)

)T
PT PF(M) = (

F(M)
)T

F(M) does not depend on the choice of P. The
assumption that all points in M are assigned can be relaxed later.

This is a generalized (because F(M ′) and F(M) are not necessarily the same size)
permutation Procrustes problem. [41,42] It can be solved by noticing that (5) is linear
in P. Therefore, the linear programming problem,

max︸︷︷︸⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0≤pi j ≤1

∣∣∣∣∣∣∣∣∣∣

1 ≥ ∑N
(M ′)
pts

i pi j

1 = ∑N (M)

pts
j=1 pi j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(
F(M ′)

)T
W

(
PF(M)

)

(6)

has a solution on the boundary of the allowed region, where pi j ∈ {0, 1}. Problem (6)
is an assignment problem; it can be efficiently solved using methods like the Hungarian
algorithm. [43] The optimum solution in Eq. (6) is a solution (albeit a very questionable
one) to the molecular alignment problem.

Why questionable? Recall that permuting the rows of Eq. (2) corresponds to rear-
ranging the points/atoms in the molecule. The permutation Procrustes algorithm in
Eq. (6) does this without respecting the connectivity of the atoms (the proximity of
the points). For a pair of molecules like the ones shown in Fig. 1, the alignment will
“rip apart” the smaller molecule.

To avoid this problem, we need to penalize the Procrustes analysis so that molecular
conformations that are high in energy are eliminated. This can be done in two ways.
The simplest way is to define the distance matrix D(M), with elements
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Fig. 1 In a non-penalized permutation Procrustes method, atoms in molecule (a) will be aligned with the
most similar atoms in molecule (c) according to cartoon (b). This favorable matching of atom types does
not respect the connectivity of the atoms in molecule (a). With a penalized permutation Procrustes method,
once the magnitude of the penalty is large enough, molecule (a) will eventually decide to align either with
the right-hand-side or the left-hand-side of molecule (c)

d(M)
i j =

∣∣∣q(M)
i − q(M)

j

∣∣∣ . (7)

We then minimize the expression in Eq. (4), subject to a penalty factor that
grows quadratically when the distance matrices of M and M ′ are dissimilar,

min︸︷︷︸⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pi j ∈{0,1}

∣∣∣∣∣∣∣∣∣∣

{0, 1} = ∑N

(
M ′)

pts
i pi j

1 = ∑N (M)
pts

j=1 pi j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(
F(M ′) − PF(M)

)T
W

(
F(M ′) − PF(M)

)
+ �

∣∣∣D(M ′) − PD(M)PT
∣∣∣
2

(8)

This ensures that points/atoms that are close to each other in molecule M are not
assigned to atoms that are far apart in molecule M ′. The number � > 0 controls
the importance of the distance constraint; should be increased until a chemically
reasonable molecular alignment is achieved. In Fig. 1, as � increases, the method
will be eventually be forced to choose between aligning either the right-hand-ends
or the left-hand ends of the molecules. The particular alignment chosen will depend
on the choice of Lk and W, and will therefore be different depending on the target
property.

A better solution to problem (8) could be obtained if we did not force every atom
in M to be assigned to an atom in M ′. However, without this assumption problem (8)

is quartic (not quadratic) in P (because PD(M)PT PD(M)PT = P
(
D(M)

)2
PT only if

all the atoms/points in M are assigned).
It is reasonable, but not essential, to symmetrize this problem by writing
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min︸︷︷︸⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi j ∈ {0, 1}
qi j ∈ {0, 1}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{0, 1} = ∑N
(M ′)
pts

i pi j

{0, 1} = ∑N
(M ′)
pts

j qi j

1 = ∑N (M)
pts

j=1 pi j

1 = ∑N (M)
pts

i=1 qi j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜⎜⎝

(
F(M ′) − PF(M)

)T
W

(
F(M ′) − PF(M)

)

+
(

F(M ′)QT − F(M)
)T

W
(

F(M ′)QT − F(M)
)

+�

(∣∣∣D(M ′) − PD(M)PT
∣∣∣
2 +

∣∣∣QD(M ′)QT − D(M)
∣∣∣
2
)

⎞
⎟⎟⎟⎟⎠

(9)

For simplicity, we will consider only problem (8), but all our comments will apply to
problem (9) also. We call (8) and (9) penalized permutation Procrustes problems.

Instead of problem (8), we can write the problem as the maximization of the expec-
tation value of a positive-definite quadratic form using 0–1 vectors (PosDef-0-1-Max),
[44]

max︸︷︷︸⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pi j ∈{0,1}

∣∣∣∣∣∣∣∣∣

{0, 1} = ∑N
(M ′)
pts

i pi j

1 = ∑N (M)
pts

j=1 pi j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(
F(M ′)

)T
W

(
PF(M)

)
−�

∣∣∣D(M ′)−PD(M)PT
∣∣∣
2

(10)

(This is equivalent to problem (8) only because we assumed that all the points/atoms in
M are assigned.) This is a standard 0–1 integer programming problem that is, unfortu-
nately, NP-hard. Such problems are often solved using branch-and-bound approaches.
The following algorithm is of that type:

Step 1. Initialization. Solve the problem for � = 0. This is a generalized permu-
tation Procrustes problem, so the Hungarian algorithm (or a related technique) can
be applied. It gives an initial permutation matrix.

Step 2. Increase � unless the present alignment is judged to be satisfactory (in the
sense that the penalty term in problem (10) has a sufficiently small value).

Step 3. For � > 0, minimize over all relaxed pseudo-permutation matrices, i.e.,
all P̃ with

0 ≤ p̃i j ≤ 1 1 ≥
N
(M ′)
pts∑
i=1

p̃i j 1 ≥
N (M)

pts∑
j=1

p̃i j (11)

This is a conventional optimization problem with inequality constraints. This gives
a lower bound on the true function value because of the first constraint above.
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Step 4. Look at the columns of the permutation matrix and select the one that is
closet to a unit vector. We branch at this point by setting that column equal to the
corresponding unit vector.

There are two cases:

• An upper bound on the cost-function for this state is obtained by forming a permu-
tation matrix by (a) seeing whether each additional column in the matrix is closer
to the zero vector or a unit vector and (b) choosing this “nearest pseudopermutation
matrix”. This gives an upper-bound to the cost. Minimizing with this unit-vector
constraint gives a lower-bound to the cost.

• Row k has a zero in position l. Add this constraint and then minimize over the
relaxed pseudo-permuation matrices. This gives a lower bound. If the lower-bound
is greater than the upper-bound, this possibility can be neglected.

Step 5. Take the lower-cost choice from step 4 and “branch” again by finding a pos-
sible unit vector. Keep doing this “branching” until one finds a pseudo-permutation
matrix, with pi j ∈ {0, 1}. At that stage, all of the alternatives with a lower bound
greater than this solution can be discarded. The lowest-cost alternative is then
examined by

Step 6. Go back to step 2. (In this method, one needs to gradually increase � until
“sensible” results are obtained.)

Problem (10) does not allow for conformational flexibility of molecules. An alter-
native approach is to assign the points/atoms in molecule M to the positions of the
corresponding atoms in molecule M ′. One then computes the energy of that confor-
mation. In this case, assignments that correspond to low-energy motions of molecule
M (obviously including translations and rotations, but also including torsions) will be
considered favorable. This corresponds to the problem,

min︸︷︷︸⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pi j ∈{0,1}

∣∣∣∣∣∣∣∣∣

{0, 1} = ∑N
(M ′)
pts

i pi j

{0, 1} = ∑N (M)
pts

j=1 pi j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎛
⎝

(
F(M ′) − PF(M)

)T
W

(
F(M ′) − PF(M)

)

+ exp
(
−β

(
E (M)

(
q(M)

i

)
− E (M)

(
PT q(M ′)

i

)))
⎞
⎠

(12)

The Boltzmann-factor dependence on the energy difference just one of many reason-
able forms. Problem (12) is also a 0–1 integer program, but it is no longer quadratic.
Since there is no longer any benefit to assuming that all atoms in M are assigned
to atoms in M ′, we relax that assumption. The preceding algorithm, which does not
exploit the special properties of a quadratic 0–1 programming problem, is applicable
to problem (12) also.

123



934 J Math Chem (2013) 51:927–936

3 Summary

We introduce the penalized permutation Procrustes problem as an approach to the
molecular alignment problem. In this approach, we maximize the similarity of a point
(or atom) and its k-nearest neighbors (k ≥ 0) in molecule M to a point (or atom) in
molecule M ′ by treating this problem as an assignment problem. The bare assignment
problem is a (generalized) permutation Procrustes problem; it can be efficiently solved
using linear programming techniques.

Unfortunately, the bare assignment problem does not preserve the proximity of
points/atoms: points that are close together in molecule M might be far apart in mole-
cule M ′. To avoid this problem, we add a penalty function that forces points (or atoms)
that are close together in M to be assigned to points that are close together in M ′.
(By using the energy, instead of the distance, to assess the closeness, conformational
flexibility in the molecules can be included.) The resulting penalized permutation Pro-
crustes problem is a 0–1 integer programming problem; it is unfortunately NP-hard,
though we suspect that greedy algorithms may work well for it. (One reason that we
include the k-nearest neighbor information in our proposed similarity measures is
that we believe this will increase the likelihood that greedy algorithms will perform
well. This is especially true if the distance to the nearest neighbors is included in the
property vector.)

Finally, we believe that this approach helps elucidate why molecular alignment is
so difficult. Even though we believe that our formulation is relatively efficient, the
problem is still NP-hard. This observation explains why alignment-free 3D-QSAR
methods are popular.

Acknowledgments FH acknowledges an Ontario Graduate Scholarship. PWA acknowledges support
from NSERC.
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